Сероводород концентрированная серная кислота. Презентация на тему "сера

Альмурзинова Завриш Бисембаевна , учитель биологии и химии МБОУ «Совхозная основная общеобразовательная школа Адамовского района Оренбургской области.

Предмет - химия, класс – 9.

УМК: «Неорганическая химия», авторы: Г.Е. Рудзитис, Ф.Г. Фельдман, Москва, «Просвещение», 2014 год.

Уровень обучения – базовый.

Тема : «Сероводород. Сульфиды. Сернистый газ. Сернистая кислота и её соли». Количество часов по теме – 1.

Урок № 4 в системе уроков по теме « Кислород и сера ».

Цель : На основании знаний о строении сероводорода, оксидов серы рассмотреть их свойства и получение, познакомить учащихся со способами распознавания сульфидов и сульфитов.

Задачи:

1. Образовательная – изучить особенности строения и свойства соединений серы (II ) и( IV ); ознакомиться с качественными реакциями на сульфид и сульфит - ионы.

2. Развивающая – развивать у учащихся умения проводить эксперимент, наблюдать за результатами, анализировать и делать выводы.

3. Воспитательная развитию интереса к изучаемому привить навыкы отношения к природе.

Планируемые результаты : уметь описывать физические и химические свойства сероводорода, сероводородной кислоты и её солей; знать способы получения сернистого газа и сернистой кислоты, объяснить свойства соединений серы (II ) и(IV ) на основе представлений об окислительно-восстановительных процессах; иметь представления о влиянии сернистого газа на появление кислотных дождей.

Оборудование : На демонстрационном столе: сера, сульфид натрия, сульфид железа, раствор лакмуса, раствор серной кислоты, раствор нитрата свинца, хлор в цилиндре, закрытом пробкой, прибор для получения сероводорода и испытания его свойств, оксид серы(VI ), газометр с кислородом, стакан вместимостью 500 мл., ложечка для сжигания веществ.

Ход урока :

    Организационный момент .

    Проводим беседу по повторению свойств серы:

1) чем объясняется наличие нескольких аллотропных видоизменений серы?

2) что происходит с молекулами: А) при охлаждении парообразной серы. Б) при длительном хранении пластической серы, в) при выпадении кристаллов из раствора серы в органических растворителях, например в толуоле?

3) на чем основан флотационный способ очистки серы от примесей, например от речного песка?

Вызываем двух учащихся: 1) изобразите схемы молекул различных аллотропных видоизменений серы и расскажите об их физических свойствах. 2) составьте уравнения реакций, характеризующих свойства кислорода, и рассмотрите их с точки зрения окисления -восстановления.

Остальные учащиеся решают задачу, какова масса сульфида цинка, образующегося при реакции соединения цинка с серой, взятой количеством вещества 2,5 моль?

    Совместно с учащимися формулируем задачу урока : познакомиться со свойствами соединений серы со степенью окисления -2 и +4.

    Новая тема : Учащиеся называют известные им соединения, в которых сера проявляет эти степени окисления. На доске и в тетрадях пишут химические, электронные и структурные формулы сероводорода, оксида серы (IV ), сернистой кислоты.

Как можно получить сероводород? Учащиеся записывают уравнение реакции соединения серы с водородом и объясняют её с точки зрения окисления-восстановления. Затем рассматривают другой способ получения сероводорода: реакцию обмена кислот с сульфидами металлов. Сравниваем этот способ со способами получения галогеноводородов. Отмечаем, что степень окисления серы в реакциях обмена не меняется.

Какими свойствами обладает сероводород? В беседе выясняем физические свойства, отмечаем физиологическое действие. Химические свойства выясняем на опыте горения сероводорода в воздухе при различных условиях. Что может образоваться в качестве продуктов реакции? Рассматриваем реакции с точки зрения окисления-восстановления:

2 Н 2 S + 3O 2 = 2H 2 O + 2SO 2

2H 2 S + O 2 =2H 2 O + 2S

Обращаем внимание учащихся на то, что при полном сгорании происходит более полное окисление (S -2 - 6 e - = S +4 ), чем во втором случае (S -2 - 2 e - = S 0 ).

Обсуждаем, как пройдет процесс, если в качестве окислителя будет взят хлор. Демонстрируем опыт смешивания газов в двух цилиндрах, верхний из которых заранее наполнен хлором, нижний - сероводородом. Хлор обесцвечивается, образуется хлороводород. Сера оседает на стенках цилиндра. После этого рассматриваем сущность реакции разложения сероводорода и подводим учащихся к выводу о кислотном характере сероводорода, подтверждая опытом с лакмусом. Затем проводим качественную реакцию на сульфид ион и составляем уравнение реакции:

Na 2 S +Pb(NO 3 ) 2 =2NaNO 3 +PbS ↓

Совместно с учащимися формулируем вывод: сероводород является только восстановителем в окислительно- восстановительных реакциях, имеет кислотный характер, раствор его в воде кислота.

S 0 →S -2 ; S -2 →S 0 ; S 0 →S +4 ; S -2 →S +4 ; S 0 →H 2 S -2 → S +4 О 2.

Подводим учащихся к выводу о существовании генетической связи между соединениями серы и начинаем разговор о соединениях S +4 . Демонстрируем опыты: 1) получение оксида серы(IV ), 2) обесцвечивание раствора фуксина, 3) растворение оксида серы(IV ) в воде, 4)обнаружение кислоты. Составляем уравнения реакций выполненных опытов и разбираем сущность реакций:

2S О 2 + О 2 =2 S О 3 ; S О 2 +2H 2 S=3S+2H 2 О .

Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы(IV ) и воду, поэтому существует только в водных растворах. Эта кислота средней силы. Она образует два ряда солей: средние - сульфиты(S О 3 -2 ), кислые – гидросульфиты(HS О 3 -1 ).

Демонстрируем опыт: качественное определение сульфитов, взаимодействие сульфитов с сильной кислотой, при этом выделяется газ S О 2 резким запахом:

К 2 S О 3 + Н 2 S О 4 → К 2 S О 4 + Н 2 О + S О 2

    Закрепление. Работа по двум вариантам составить схемы применения 1 вариант сероводорода, второй вариант оксида серы(IV )

    Рефлексия . Подводим итоги работы:

О каких соединениях мы сегодня говорили?

Какие свойства проявляют соединения серы(II ) и ( IV ).

Назовите области применения этих соединений

VII . Домашнее задание: §11,12, упр.3-5 (с.34)

Кислород с амый распространённый элемент земной коры. Молекула кислорода двухатомна (O 2). Простое вещество – молекулярный кислород – представляет собой газ без цвета и запаха, плохо растворимый в воде. В атмосфере Земли содержится 21 % (по объёму) кислорода. В природных соединениях кислород встречается в виде оксидов (H 2 O, SiO 2) и солей оксокислот. Одно из важнейших природных соединений кислорода – вода, или оксид водорода H 2 O.

Помимо оксидов, кислород способен образовывать пероксиды – вещества, содержащие следующую группировку атомов: –O–O– . Один из важнейших пероксидов – пероксид водорода H 2 O 2 (H–O–O–H). В пероксидах атомы кислорода имеют промежуточную степень окисления минус 1, поэтому эти соединения могут быть как окислителями, так и восстановителями:

Из величин стандартных электродных потенциалов следует, что окисли

тельные свойства H2O2 наиболее сильно проявляются в кислой среде, а восстановительные – в щелочной. Например, пероксид водорода в кислой среде способен окислять те вещества, стандартный потенциал электрохимической системы которых не превышает +1,776 В, и восстанавливать только те, у которых потенциал больше +0,682 В.

Аллотропной модификацией кислорода является озон (O3) – газ со специфическим запахом. Озон получают действием «тихих» электрических разрядов на кислород в специальных приборах – озонаторах. Реакция превращения кислорода в озон требует затраты энергии:

3O2 ↔ 2O3 – 285 кДж.

Обратный процесс – распад озона – протекает самопроизвольно.

Озон – один из сильнейших окислителей; по окислительной активности он уступает только фтору.

При высокой температуре сера взаимодействует с водородом с образованием сероводорода (H2S) – бесцветного газа с характерным запахом гниющего белка. Поскольку эта реакция обратима, то на практике сероводород обычно получают действием разбавленных кислот на сульфиды металлов:

FeS + 2 HCl → H2S + FeCl2 .

Сероводород – сильный восстановитель; при поджигании на воздухе горит голубоватым пламенем:

2 H2S + 3 O2 → 2 SO2 + 2 H2O (в избытке кислорода).

Поэтому смесь сероводорода с воздухом взрывоопасна. При недостатке кислорода сероводород окисляется только до свободной серы:

2 H2S + O2 → 2 S + 2 H2O .

Сероводород очень ядовит и способен вызвать тяжёлые отравления.

Раствор сероводорода в воде обладает свойствами слабой двухосновной кислоты (К1 = 6×10–8, К2 = 1×10–14). Средние соли сероводородной кислоты – сульфиды – можно получить непосредственным взаимодействием металлов с серой. Малорастворимые сульфиды можно получить, действуя сероводородом на растворы солей соответствующих металлов:

CuSO4 + H2S CuS+ H2SO4 .

Оксид серы (IV) образуется при горении серы на воздухе:

S + O2 → SO2 .

В промышленности SO2 получают при обжиге сульфидов и полисульфидов металлов, а также термическим разложением сульфатов (в частности CaSO4):

Диоксид серы – бесцветный газ с запахом жжёной серы. SO2 хорошо растворяется в воде, образуя сернистую кислоту:

Сернистая кислота – слабая двухосновная кислота (К1=1,6×10–2, К2=6×10–8). H2SO3 и её соли являются хорошими восстановителями и окисляются до серной кислоты или сульфатов:

При высокой температуре в присутствии катализатора (V2O5, сплавы на основе платины) диоксид серы окисляется кислородом до триоксида:

Оксид серы (VI) – это ангидрид серной кислоты:

В газообразном состоянии оксид серы (VI) состоит из молекул SO3, построенных в форме правильного треугольника. При конденсации паров SO3 образуется летучая жидкость (t кипения = +44,8 °C), состоящая преимущественно из тримерных циклических молекул. При охлаждении до +16,8 °C она затвердевает, и образуется так называемая льдовидная модификация SO3 . При хранении она постепенно превращается в асбестовидную модификацию SO3, состоящую из полимерных молекул.

Концентрированная серная кислота, особенно горячая, – энергичный окислитель. Она окисляет бромид- и иодид-ионы до свободных галогенов, уголь – до углекислого газа, серу – до SO2. При взаимодействии с металлами концентрированная серная кислота переводит их в сульфаты, восстанавливаясь до SO2, S или H2S. Чем более активен металл, тем более глубоко восстанавливается кислота.

Например, при взаимодействии концентрированной серной кислоты с медью преимущественно выделяется SO2; при взаимодействии с цинком может наблюдаться одновременное выделение и оксида серы (IV), и свободной серы, и сероводорода:

H2SO4 – сильная двухосновная кислота, диссоциированная по первой стадии

практически нацело; диссоциация по второй стадии протекает в меньшей степени, однако в разбавленных водных растворах серная кислота диссоциирована практически нацело по схеме:

H2SO4 → 2 H + + SO4 2-

Большинство солей серной кислоты хорошо растворимо в воде. К практически нерастворимым относятся BaSO4 , SrSO4 , PbSO4; малорастворим CaSO4. Качественная реакция на ионы SO4 2– обусловлена образованием малорастворимых сульфатов. Например, при введении ионов бария в раствор, содержащий сульфатионы, выпадает белый осадок сульфата бария, практически нерастворимый в воде и разбавленных кислотах:

Ba 2+ + SO4 2- → BaSO4↓ .

Серную кислоту применяют в производстве минеральных удобрений;

как электролит в свинцовых аккумуляторах; для получения различных минеральных кислот и солей; в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ; в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности и т.д.

22 урок 9 класс

Урок на тему: Сероводород. Сульфиды. Оксид серы (IV ). Сернистая кислота

Задачи урока: Общеобразовательные: Закрепить знания учащихся по пройденной теме: аллотропия серы и кислорода, строение атомов серы и кислорода, химические свойства и применение серы с использованием тестирования, в целях подготовки учащихся к ГИА; Изучить строение, свойства и применение газов: сероводорода, сернистого газа, сернистой кислоты. Изучить соли – сульфиды, сульфиты и их качественное определение с использованием учебного электронного пособия по химии 9класс. Изучить влияние сероводорода, оксида серы (IV ) на окружающую среду и здоровье человека. Использовать презентации учащихся при изучении новой темы и закреплении. Использовать мультимедийный проектор при проверке теста. Продолжить подготовку учащихся к сдаче экзаменов по химии в форме ГИА.

Воспитательные: Нравственное и эстетическое воспитание учащихся к окружающей среде. Воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде. Воспитание умения работать в парах при самоанализе контрольных срезов, тестов.

Развивающие: Уметь применять полученные знания для объяснения разнообразных химических явлений и свойств веществ. Уметь применять дополнительный материал из информационных источников, компьютерных технологий при подготовки учащихся к ГИА.Использовать приобретенные знания и умения в практической деятельности и повседневной жизни: а) экологически грамотного поведения в окружающей среде; б) оценки влияния химического загрязнения окружающей среды на организм человека.

Оборудование к уроку: Г.Е. Рудзитис, Ф.Г. Фельдман «Учебник химии 9 класс». Презентации учащихся: «Сероводород», «Оксид серы (IV )», «Озон». Тест к подготовке ГИА, ответы к тесту. Электронное пособие для изучения химии 9класс: а) качественные реакции на сульфид-ион, сульфит-ион. б) мультимидийный проектор

в) экран проекционный. Защита плаката «Загрязнение окружающей среды выбросами сероводорода и сернистого газа».

Ход урока.

I . Начало урока: Учитель объявляет тему, цель и задачи урока.

    Закрепление изученного материала:

Проводится по вопросам теста в целях подготовки учащихся к сдачи ГИА (тест прилагается).

    Ответы теста выводятся на экран:

Учащиеся проводят взаимопроверку тестов и ставят оценки (листочки сдаются учителю). Критерии оценок: 0 ошибок – 5; 1 – 2 ошибки – 4; 3 ошибки – 3; 4 и больше – 2

Тест проводится в течении 7 минут и проверяется в течение 3 минут.

II . Изучение новой темы:

    Сероводород. Сульфиды.

Сероводород является ценным в химическом плане соединением серы, его свойства мы сегодня будем изучать на уроке. С нахождением сероводорода в природе, его физических свойствах и его действии на организм человека и окружающую среду мы познакомимся через презентацию.

Почему нельзя получать сероводород в лаборатории как другие газы, например: кислород и водород? На этот вопрос учащиеся ответят после прослушивания презентации.

    Строение сероводорода:

а) молекулярная формула Н 2 S -2 , степень окисления серы (-2), ядовит.

б) сероводород имеет запах тухлых яиц.

3. Получение сероводорода: Получение в лаборатории: получают действием разбавленной серной кислоты на сульфид железа (II ), так как сероводород ядовит, опыты проводят в вытяжном шкафу. H 2 + S 0 → H 2 S -2

FeS + H 2 SO 4 → FeSO 4 + H 2 S эта реакция проводится в аппарате Кипа, который используют для получения водорода.

4. Химические свойства сероводорода: Сероводород горит на воздухе голубым пламенем при этом образуется сернистый газ или оксид серы(IV )

2 H 2 S -2 + 3 O 2 → 2 H 2 O + 2 S +4 O 2

восстановитель

При недостатке кислорода образуются пары воды и серы: 2 H 2 S -2 + O 2 → 2 H 2 O + 2 S 0

Сероводород обладает свойствами восстановителя: если в пробирку с сероводородом прилить небольшое количество бромной воды, то раствор обесцветится и на поверхности раствора появится сера

H 2 S -2 + Br 0 2 → S 0 + 2 HBr -1

Сероводород мало-растворим в воде: в одном объеме воды при t = 20 º растворяется 2,4 объема сероводорода, этот раствор называют сероводородной водой или слабой сероводородной кислотой. Рассмотрим диссоциацию сероводородной кислоты: H 2 S H + + HS -

HS - ↔ H + + S 2- Диссоциация по второй ступени практически не протекает, так как это слабая кислота. Она дает 2 типа солей:

HS - (I) S 2-

гидросульфиды сульфиды

I I I II

NaHS Na 2 S

Гидросульфид натрия сульфид натрия

    Сероводородная кислота вступает со щелочами в реакцию нейтрализации:

H 2 S + NaOH → NaHS + H 2 O

избыток

H 2 S + 2NaOH Na 2 S + 2H 2 O

избыток

Качественная реакция на сульфид-ион (демонстрация опыта с электронного образовательного диска)

Pb (NO 3 ) 2 + Na 2 S PbS ↓ + 2 NaNO 3 написать полное ионное и краткое

осадок черного цвета ионное уравнение

(Na 2 S + CuCl 2 → CuS ↓ + 2 HCl )

осадок черного цвета

Зарядка для глаз. (1-2 минуты)

Соблюдение санитарно-гигиенических норм работы с использованием компьютера на уроке.

5. Оксид серы(IV ) – сернистый газ. S +4 O 2 степень окисления серы (+4).

Другим важным соединением серы является оксид серы(IV ) SO 2 – сернистый газ. Ядовит.

С физическими свойствами сернистого газа, применением и влиянием на окружающую среду и здоровье человека мы познакомимся через презентацию.

Почему сернистый газ нельзя получать на практической работе?

Получение оксида серы(IV ): образуется при горении серы на воздухе, газ с резким запахом.

S + O 2 SO 2

Сернистый газ обладает свойствами кислотного оксида при растворении его в воде образуется сернистая кислота, электролит средней силы SO 2 + H 2 O H 2 SO 3 лакмус окрашивается в красный цвет.

Химические свойства SO 2 :

Реагирует с основными оксидами SO 2 + CaO CaSO 3

Реагирует со щелочами SO 2 + 2 NaOH Na 2 SO 3 + H 2 O

(дома расписать полное ионное и краткое ионное уравнение)

Сера проявляет степени окисления: S -2 , S 0 , S +4 , S +6 .

В оксиде серы(IV ) SO 2 степень окисления +4, поэтому сернистый газ проявляет свойства окислителя и восстановителя

S +4 O 2 + 2H 2 S -2 → 3S 0 ↓ + 2H 2 O S +4 O 2 + Cl 0 2 + 2H 2 O → H 2 S +6 O 4 + 2HCl -1 2-

Гидросульфит сульфит

К HSO 3 К 2 SO 3

Качественная реакция на сульфит-ион (реагентом является серная кислота, образуется газ с резким запахом, который обесцвечивает растворы) фрагмент из электронного образовательного диска.

K 2 SO 3 + H 2 SO 4 → K 2 SO 4 + SO 2 + H 2 O

Дома расписать полное и краткое ионное уравнение.

    Защита плаката «Загрязнение окружающей среды соединениями серы».

    Защита презентации

    Домашнее задание §11-12 , записи, упр. 3,5 стр.34(п)

III . Итог урока:

    Учитель подводит итог урока

    Выставляет оценки за тест, презентацию.

    Благодарит учащихся за урок.

    Первая помощь при отравлении газами: сероводородом, сернистым газом: промывание носа, полости рта 2% раствором гидрокарбоната натрия NaHCO 3 , покой, свежий воздух.

Урок 13

Оксид серы (IV). Сероводородная и сернистая кислоты и их соли

Цели урока:

1. Охарактеризовать химические свойства оксида серы (IV), сероводородной и сернистой кислот и их солей, качественные реакции на соединения серы (предметный результат).

2. Продолжить развивать умение генерировать идеи, выявлять причинно-следственные связи, искать аналогии и работать в команде, пользоваться альтернативными источниками информации (метапредметный результат).

3. Формирование умений управлять своей учебной деятельностью, подготовка к осознанию выбора дальнейшей образовательной траектории (личностный результат).

Ход урока

    Подготовка к восприятию нового материала (10 мин)

Опрос учащихся по домашнему заданию.

    Изучение нового материала (20 мин)

Сероводород H 2 S – бесцветный газ тяжелее воздуха, запах тухлых яиц. Очень ядовит. Содержится в вулканических газах и минеральных водах.

Получают обменной реакцией:

Химические свойства:

1. Горение на воздухе голубым пламенем:

2H 2 S + 3O 2( изб .) = 2H 2 O + 2SO 2

2H 2 S + O 2( недост .) = 2H 2 O + 2S

2. Восстановительные свойства:

3. При растворении в воде образуется сероводородная кислота, которая диссоциирует:

4. Взаимодействие со щелочами. Образует два типа солей: сульфиды и гидросульфиды:

Сернистый газ SO 2 : бесцветный, с резким запахом, тяжелее воздуха, хорошо растворяется в воде, ядовит.

Кислотный оксид.

1. При вз-и с водой образует сернистую к-ту:

Сернистая к-та неустойчива, легко распадается на оксид серы (IV) и воду. Существует только в водных растворах. Образует два типа солей: сульфиты и гидросульфиты.

Качественная реакция на сульфиты

Сероводород (H₂S) представляет собой бесцветный газ c запахом тухлых яиц. По плотности он тяжелее водорода. Сероводород смертельно ядовит для человека и животных. Даже незначительное его содержание в воздухе вызывает головокружение и тошноту, но самым страшным является то, что при длительном его вдыхании этот запах уже не ощущается. Однако при отравлении сероводородом существует простое противоядие: следует завернуть в платок кусок хлорной извести, затем смочить, и какое-то время нюхать этот сверток. Сероводород получают путем взаимодействия серы с водородом при температуре 350 °С:

H₂ + S → H₂S

Это окислительно-восстановительная реакция: в ходе нее изменяются степени окисления участвующих в ней элементов.

В лабораторных условиях сероводород получают воздействием на сульфид железа серной или соляной кислоты:

FeS + 2HCl → Fe­Cl₂ + H₂S

Это реакция обмена: в ней взаимодействующие вещества обмениваются своими ионами. Данный процесс обычно проводят с помощью аппарата Киппа.


Аппарат Киппа

Свойства сероводорода

При горении сероводорода образуется оксид серы 4 и водяной пар:

2H₂S + 3О₂ → 2Н₂О + 2SO₂

H₂S горит голубоватым пламенем, а если над ним подержать перевернутый химический стакан, то на его стенках появится прозрачный конденсат (вода).

Однако при незначительном понижении температуры данная реакция проходит несколько иначе: на стенках предварительно охлажденного стакана появится уже желтоватый налет свободной серы:

2H₂S + О₂ → 2Н₂О + 2S

На этой реакции основан промышленный способ получения серы.

При поджигании предварительно подготовленной газообразной смеси сероводорода и кислорода происходит взрыв.

Реакция сероводорода и оксида серы(IV) также позволяет получить свободную серу:

2H₂S + SО₂ → 2Н₂О + 3S

Сероводород растворим в воде, причем три объема этого газа могут раствориться в одном объеме воды, образуя слабую и нестойкую сероводородную кислоту (Н₂S). Эту кислоту также называют сероводородной водой. Как видите, формулы газа-сероводорода и сероводородной кислоты записываются одинаково.

Если к сероводородной кислоте прилить раствор соли свинца, выпадет черный осадок сульфида свинца:

H₂S + Pb(NO₃)₂ → PbS + 2H­NO₃

Это качественная реакция для обнаружения сероводорода. Она же демонстрирует способность сероводородной кислоты вступать в реакции обмена с растворами солей. Таким образом, любая растворимая соль свинца является реактивом на сероводород. Некоторые другие сульфиды металлов также имеют характерную окраску, например: сульфид цинка ZnS - белую, сульфид кадмия CdS - желтую, сульфид меди CuS - черную, сульфид сурьмы Sb₂S₃ - красную.

Кстати, сероводород является нестойким газом и при нагревании практически полностью разлагается на водород и свободную серу:

H₂S → Н₂ + S

Сероводород интенсивно взаимодействует с водными растворами галогенов:

H₂S + 4Cl₂ + 4H₂O→ H₂­SO₄ + 8HCl

Сероводород в природе и жизнедеятельности человека

Сероводород входит в состав вулканических газов, природного газа и газов, сопутствующих месторождениям нефти. Много его и в природных минеральных водах, например, в Черном море он залегает на глубине от 150 метров и ниже.

Сероводород применяют :

  • в медицине (лечение сероводородными ваннами и минеральными водами);
  • в промышленности (получение серы, серной кислоты и сульфидов);
  • в аналитической химии (для осаждения сульфидов тяжелых металлов, которые обычно нерастворимы);
  • в органическом синтезе (для получения сернистых аналогов органических спиртов (меркаптанов) и тиофена (серосодержащего ароматического углеводорода). Еще одно из недавно появившихся направлений в науке - сероводородная энергетика. Всерьез изучается получение энергии из залежей сероводорода со дна Черного моря.

Природа окислительно-восстановительных реакций серы и водорода

Реакция образования сероводорода является окислительно-восстановительной:

Н₂⁰ + S⁰→ H₂⁺S²⁻

Процесс взаимодействия серы с водородом легко объясняется строением их атомов. Водород занимает первое место в периодической системе, следовательно, заряд его атомного ядра равен (+1), а вокруг ядра атома кружится 1 электрон. Водород с легкостью отдает свой электрон атомам других элементов, превращаясь в положительно заряженный ион водорода - протон:

Н⁰ -1е⁻= Н⁺

Сера находится на шестнадцатой позиции в таблице Менделеева. Значит, заряд ядра ее атома равен (+16), и количество электронов в каждом атоме также 16е⁻. Расположение серы в третьем периоде говорит о том, что ее шестнадцать электронов кружатся вокруг атомного ядра, образуя 3 слоя, на последнем из которых находится 6 валентных электронов. Количество валентных электронов серы соответствует номеру группы VI, в которой она находится в периодической системе.

Итак, сера может отдать все шесть валентных электронов, как в случае образования оксида серы(VI):

2S⁰ + 3O2⁰ → 2S⁺⁶O₃⁻²

Кроме того, в результате окисления серы, 4е⁻могут быть отданы ее атомом другому элементу с образованием оксида серы(IV):

S⁰ + О2⁰ → S⁺4 O2⁻²

Сера может отдать также два электрона c образованием хлорида серы(II) :

S⁰ + Cl2⁰ → S⁺² Cl2⁻

Во всех трех вышеуказанных реакциях сера отдает электроны. Следовательно, она окисляется, но при этом выступает в роли восстановителя для атомов кислорода О и хлора Cl. Однако в случае образования H2S окисление - удел атомов водорода, поскольку именно они теряют электроны, восстанавливая внешний энергетический уровень серы с шести электронов до восьми. В результате этого каждый атом водорода в его молекуле становится протоном:

Н2⁰-2е⁻ → 2Н⁺,

а молекула серы, наоборот, восстанавливаясь, превращается в отрицательно заряженный анион (S⁻²): S⁰ + 2е⁻ → S⁻²

Таким образом, в химической реакции образования сероводорода окислителем выступает именно сера.

С точки зрения проявления серой различных степеней окисления, интересно и еще одно взаимодействие оксида серы(IV) и сероводорода - реакция получения свободной серы:

2H₂⁺S-²+ S⁺⁴О₂-²→ 2H₂⁺O-²+ 3S⁰

Как видно из уравнения реакции, и окислителем, и восстановителем в ней являются ионы серы. Два аниона серы (2-) отдают по два своих электрона атому серы в молекуле оксида серы(II), в результате чего все три атома серы восстанавливаются до свободной серы.

2S-² - 4е⁻→ 2S⁰ - восстановитель, окисляется;

S⁺⁴ + 4е⁻→ S⁰ - окислитель, восстанавливается.